CHEM CONCRETE PTY LTD

Manufacturer & Supplier of Hybrid Concrete Waterproofing Admixtures Operating in Australia, New Zealand, USA, Canada & UK with Distributors in Major Countries. ABN: 79 652 759 772

Website: www.chemconcrete.com.au **E-mail:** sales@chemconcrete.com.au **Phone:** +61-4-2-388-1091 | +61-4-8-1-69-1552 | +61-4-0-1-33-5611 **Office Addd:** 16 Caird Place, Seven Hills, NSW 2147, Australia.

18.02.2025

"Independent Testing of ChemConcrete-WP Admix"

SUMMARY

CHEM CONCRETE is a rapidly growing company with a team of 6 globally recognized professors, 14 PhD holders, and 8 engineers. We specialize in the development, manufacturing, and supply of a new generation of concrete waterproofing and durability-enhancing admixture—known as Hybrid Admixture—which is proven to be more reliable, cost-effective, and environmentally friendly compared to traditional waterproofing products.

Our Hybrid ChemConcrete-WP Admixture (Patent No. 2023902368) is fundamentally different from the current admixtures on the market. Concrete treated with ChemConcrete^{-WP} Admix exhibits significantly enhanced durability and waterproofing performance compared to traditional waterproofing solutions.

This admixture has been independently tested by several ready-mix concrete suppliers (both in Australia and internationally), private laboratories, companies, and leading universities—including Laval University (Canada), University College London (UK), New Mexico Institute of Mining and Technology (USA), Concordia University (Canada), RMIT University (Australia), etc. Some of these test results have been published or are currently under review in international journals and conferences, such as The 9th International Congress on Civil Engineering, Architecture, and Urban Development.

KEY FINDINGS FROM INDEPENDENT TESTING

Independent test results confirm that ChemConcrete^{-WP} Admix permanently waterproofs concrete while significantly improving its fresh, strength, and durability properties compared to both untreated concrete and concrete treated with some other commercial waterproofing admixtures. **Depending on the dosage used, concrete treated with ChemConcrete-WP Admixture achieved:**

- 4 20–50% higher compressive strength.
- **4** 70–95% lower water absorption rate and permeability.
- Up to three times longer service life compared to untreated concrete or concrete treated with some other similar waterproofing admixtures.

TESTING PROTOCOL

Samples of ChemConcrete^{-WP} Admixture were distributed to various laboratories, companies, and universities across several countries. The samples were provided in 6-litre, 10-litre, and 20-litre pails, depending on the testing requirements and the volume of the concrete mixes needed. Most of these tests were conducted independently, without supervision from CHEM CONCRETE's technical team. The admixture was tested at different dosages, ranging from 4 to 20 litres per cubic metre of concrete (1 to 4 gallons per cubic yard). The following sections summarize the independent test results.

Hy-Tec Industries (New South Wales) Pty Ltd ABN: 90 070 100 702

Unit 7/85-115 Alfred Road Chipping Norton New South Wales 2170 Ph : (02) 9822 6842 Fax: (02) 9601 7446

Concrete Test Report

Client: HY TEC INDUSTRIES P/L

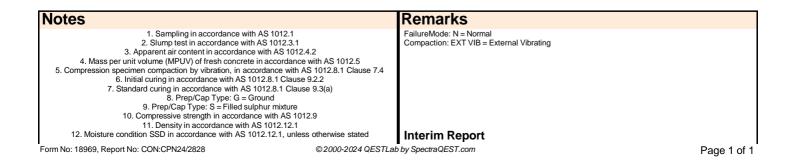
NSW 2144

Project: QUALITY CONTROL

Report No: CON:CPN24/2828

Issue No: 2

This report replaces all previous issues of report no 'CON:CPN24/2828'.


NATA Accredited Approved By: KHUZAIMA KHAN Laboratory No.: (TECHNICAL SUPERVISOR) 18082 Date of Issue: 30/07/2024 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

COMPRESSIVE STRENGTH OF CONCRETE CYLINDERS

Details of Sampled Concrete

Concrete Specimens and Results

	Time Sampled Time Moulded Tog. Load	Plant Code (Docket No Mix Code MPUV(kg/m ³)	Agg(mm) Slump	Compac	ldent.	Dimen (mr Avg. Diameter	n)	Density (kg/m ³)	Curir Initial (hrs) (Štd days)	Prep or Cap Type	Date of Test		Strength (MPa)	Marks Fail Mode	Location & Remarks
01/07/24	11:28	232	S50	1.8	CPN68923A	100.1	199	2320	22	0	S	02/07/24	1	6.8	Ν	Concrete Temp. (°C): 16
11:20	11:50		20	EXT VIB	CPN68923B	100.1	197	2360		3	G	05/07/24	4	32.0	Ν	CONTROL MIX
		N502B80C	100	85	CPN689230	; 100.2	196	2320		6	G	08/07/24	7	41.5	N	
		2320			CPN68923D	99.8	197	2360		13	G	15/07/24	14	57.5	N	
					CPN68923E	100.2	197	2360		27	G	29/07/24	28	64.5	N	
					CPN68923F	100.1	199	2340		27	G	29/07/24	28	66.0	N	
					CPN689230	6				55	G	26/08/24	56			
					CPN68923H	I				90	G	30/09/24	91			
01/07/24	09:40	232	S50	1.8	CPN68924A	100.1	200	2340	24	0	S	02/07/24	1	12.5	N	Sampling AS 1012.2
09:30	10:20		20	EXT VIE	3 CPN68924E	100.2	198	2360		3	G	05/07/24	4	43.0	Ν	Pan Mixer
		N502B80C	100	80	CPN689240	; 100.2	198	2360		6	G	08/07/24	7	53.5	Ν	CHEMCONCRETE-WP
		2360			CPN68924D	100.1	198	2360		13	G	15/07/24	14	66.5	Ν	ADMIXTURE
					CPN68924E	100.0	200	2380		27	G	29/07/24	28	81.5	Ν	
					CPN68924F	100.2	199	2360		27	G	29/07/24	28	83.0	Ν	
					CPN689240	6				55	G	26/08/24	56			
					CPN68924H	I				90	G	30/09/24	91			

Unit 9/108-110 Percival Rd (PO Box 2162) Smithfield NSW 2164 Ph: (02) 9756 4003 Email: admin@mahaffey.com.au ABN: 90 001 629 036

Client:	Ну Тес	Job No: 20401
Project:	Quality Control	Date Cast: 1/07/2024
Section:	-	Date Received: 2/07/2024
Mix Identification.	: 68923	Date Curing Commenced: 2/07/2024
Mix Design:	N502B80C-S50MPa Control	Date of Initial Measurement: 8/07/2024
		Duration of Standard Moist Curing (Days): 6

Test Type: Determination of the Drying Shrinkage of Concrete

Specimen		Drying S	hrinkage (Mi	crostrain)	
-	7 Days	14 Days	21 Days	28 Days	56 Days
I	260	350	400	440	510
J	250	340	390	430	500
К	260	360	410	450	530
Average	260	350	400	440	510

Note: "*" denotes information not suplied by the client Samples cast by: Others

Tested in accordance with AS 1012 Part 13 - 2015

The average drying shrinkage results are based on individual results

within 40 microstrain of the median, as required by the standard.

) l

David Wilmshurst Approved Signatory Date of Issue: 04/09/2024

Accredited for compliance with ISO/IEC 17025 - Testing

This document shall not be reproduced except in full

Unit 9/108-110 Percival Rd (PO Box 2162) Smithfield NSW 2164 Ph: (02) 9756 4003 Email: admin@mahaffey.com.au ABN: 90 001 629 036

Client:	Ну Тес	Job No: 20401
Project:	Quality Control	Date Cast: 1/07/2024
Section:	-	Date Received: 2/07/2024
Mix Identification:	68924	Date Curing Commenced: 2/07/2024
Mix Design:	N502B80C-S50MPa Waterproofing	Date of Initial Measurement: 8/07/2024
	Dura	tion of Standard Moist Curing (Days): 6

Test Type: Determination of the Drying Shrinkage of Concrete

Specimen		Drying S	hrinkage (Mi	crostrain)	
-	7 Days	14 Days	21 Days	28 Days	56 Days
I	180	260	290	310	370
J	200	270	320	330	390
К	190	260	300	330	380
Average	190	260	300	320	380

Note: "*" denotes information not suplied by the client Samples cast by: Others

Tested in accordance with AS 1012 Part 13 - 2015

The average drying shrinkage results are based on individual results

within 40 microstrain of the median, as required by the standard.

Wilmol

David Wilmshurst Approved Signatory Date of Issue: 04/09/2024

Accredited for compliance with ISO/IEC 17025 - Testing

This document shall not be reproduced except in full

Unit 9/108-110 Percival Rd (PO Box 2162) Smithfield NSW 2164 Ph: (02) 9756 4003 Email: admin@mahaffey.com.au ABN: 90 001 629 036

Client:	Ну Тес	
Project:	Quality Control N502B80C-S50MPa Control	
Test Type:	Sorptivity	
Test Method:	RMS T362	
Mix ID:	68923	
		Tee

Job Number: 20401 Cast Date: 1/07/2024 Received Date: 2/07/2024 Exposure Category C Curing Regime: Water Test Date (Completed): 14/08/2024

Beam	Curing Regime	Curing Period (Days)	Average Water Penetration (mm)
S	Water	7	6.0
т	Water	7	6.3
	6.2		

Notes: Values quoted as 0.5mm are at the lower limit of measurement and the actual value may be less than 0.5mm

Wilmlent

David Wilmshurst Approved Signatory Date of Issue: 15/08/2024

MAHAFFEY ASSOCIATES PTY LTD Unit 9/108-110 Percival Rd (PO Box 2162) Smithfield NSW 2164 Ph: (02) 9756 4003 Email: admin@mahaffey.com.au ABN: 90 001 629 036

Client:	Ну Тес	Job Number: 20401
Project:	Quality Control N502B80C-S50MPa Waterproofing	Cast Date: 1/07/2024
Test Type:	Sorptivity	Received Date: 2/07/2024
Test Method:	RMS T362	Exposure Category C
Mix ID:	68924	Curing Regime: Water
		Test Date (Completed): 14/08/2024

Beam	Curing Regime	Curing Period (Days)	Average Water Penetration (mm)
S	Water	7	0.0
т	Water	7	0.0
	0.0		

Notes: Values quoted as 0.5mm are at the lower limit of measurement and the actual value may be less than 0.5mm

) Will land

David Wilmshurst Approved Signatory Date of Issue: 15/08/2024

Unit 9/108-110 Percival Rd (PO Box 2162) Smithfield NSW 2164 Ph: (02) 9756 4003 Email: admin@mahaffey.com.au ABN: 90 001 629 036

Client:	Hy Tec
Job Number:	20401
Details:	68923 N502B80C-S50 MPa Control
Test Method:	Determination of chloride and sulfate in hardened concrete and aggregates Nitric acid extraction method AS 1012.20.1
Cast Date:	1/07/2024
Received Date:	2/07/2024 <u>Sulfate Test Report</u>
Test Date:	24/07/2024

Specimen	Dept	SO ₃ =	
Specimen	From	То	(% w/w Specimen)
68923	-	-	0.480

Notes:

Samples prepared in this laboratory using AS1012 Method 20.1 – 2016 Section 6 Work covered by Clause 7 of the standard by NATA accredited facility no. 1884

) i) wind (i)

Signed:

David Wilmshurst Approved Signatory Date of Issue: 24/07/2024

Accredited for compliance with ISO/IEC 17025 - Testing

Unit 9/108-110 Percival Rd (PO Box 2162) Smithfield NSW 2164 Ph: (02) 9756 4003 Email: admin@mahaffey.com.au ABN: 90 001 629 036

Client:	Hy Tec
Job Number:	20401
Details:	68924 N502B80C-S50 MPa Waterproofing
Test Method:	Determination of chloride and sulfate in hardened concrete and aggregates Nitric acid extraction method AS 1012.20.1
Cast Date:	1/07/2024
Received Date:	2/07/2024 <u>Sulfate Test Report</u>
Test Date:	24/07/2024

Specimen	Dept	h (mm)	SO ₃ =
Specimen	From	То	(% w/w Specimen)
68924	-	-	0.350

Notes:

Samples prepared in this laboratory using AS1012 Method 20.1 – 2016 Section 6 Work covered by Clause 7 of the standard by NATA accredited facility no. 1884

Signed:

David Wilmshurst Approved Signatory Date of Issue: 24/07/2024

).) will like

Accredited for compliance with ISO/IEC 17025 - Testing

Hy-Tec Industries (New South Wales) Pty Ltd ABN: 90 070 100 702

Sut

NATA Accredited Approved By: Edgar Hernandez

Laboratory No.: (Lab Manager) 18082 Date of Issue: 2

Report No: CON:MOO23/5880

Accredited for compliance with ISO/IEC 17025 - Testing

This report replaces all previous issues of report no 'CON:MOO23/5880'.

18082 Date of Issue: 28/02/2024 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Issue No: 6

Unit 7/85-115 Alfred Road Chipping Norton New South Wales 2170 Ph : (02) 9822 6842 Fax: (02) 9601 7446

NATA

Concrete Test Report

Client: HY TEC INDUSTRIES P/L

NSW 2144

Project: QUALITY CONTROL

COMPRESSIVE STRENGTH OF CONCRETE CYLINDERS

Details of Sampled Concrete Concrete Specimens and Results

ate & Time Time Batched Time Truck No Load / Prog.	Moulded	Plant Code Docket No Mix Code	Agg(mm) Slum		Ident.	Dimensions (mm) Avg. Diameter He			Curi Initial (hrs) (Štd	or		Age Stro days) (N			il Loca Node	tion & Remarks
29/11/23	11:13		S50	1.8	MOO6242	9A 100.1	200	2340	19	0	S	30/11/2	31	14.0		N S	Sampling AS 1012.2
11:13	11:33			25H	MOO6242	9B 100.3	198	2340		4	G	04/12/2	35	38.0			Pan Mixer
		N502B80	C 100	100	MOO6242	29C 100.3	198	2340		6	G	06/12/2	37	45.0		Ν	Concrete Temp. (°C): 25 SL CONTROL MIX
0.1					MOO6242	29D 100.6	197	2320		13	G	13/12/2	3 14	55.5		Ν	
					MOO6242	9E 100.1	197	2360)	33	G	02/01/2	4 34	64.0	Е	s	
					MOO6242	9F 100.1	197	2360	1	33	G	02/01/2	4 34	67.0		Ν	
					MOO6242	9G 100.0	198	2360	1	55	G	24/01/2	4 56	68.0		Ν	
					MOO6242	9H 100.5	197	2360)	90	G	28/02/2	4 91	74.5		Ν	
29/11/23	12:28		S50	1.4	MOO6243	0A 100.1	201	2420	18	0	S	30/11/2	3 1	25.0		N S	Sampling AS 1012.2
12:15	12:48			25H	MOO6243	0B 100.2	200	2420	1	4	G	04/12/2	35	73.5		NF	Pan Mixer
		N502B800	C 100	100	MOO6243	0C 100.1	200	2440		6	G	06/12/2	37	79.5			Concrete Temp. (°C): 25 Hybrid Integral
0.1					MOO6243	0D 100.3	198	2440		13	G	13/12/2	3 14	97.0		Ν	Waterproofing
					MOO6243	0E 100.2	196	2460		33	G	02/01/2	4 34	103.0	Е	s	
					MOO6243	0F 100.1	199	2440		33	G	02/01/2	4 34	107.5		Ν	
					MOO6243	0G 100.0	198	2440		55	G	24/01/2	4 56	104.0		Ν	
					MOO6243	0H 100.1	197	2460		90	G	28/02/2	4 91	113.5		Ν	

Notes	Remarks
1. Sampling in accordance with AS 10 2. Slump test in accordance with AS 10 3. Air content in accordance with AS 10 4. Compression specimen compaction by rodding, in accordanc 5. Initial curing in accordance with AS 1012.8.1 6. Standard curing in accordance with AS 1012.8.1 7. Prep/Cap Type: G = Ground 8. Prep/Cap Type: S = Filled sulphur m 9. Compressive strength in accordance with AS 101.1.2	P Compaction: 25H = 25 rods per layer AS 1012.8.1 Clause 7.3 se 9.2.2 use 9.3(a) P P12.9 P
Form No: 18969, Report No: CON:MOO23/5880	© 2000-2024 QESTLab by Spectra QEST.com Page 1 of 7

Performance of Commercial Concrete Modified with Hybrid ChemConcrete^{-WP} Waterproofing Admixture

M.R. Rezaeian^{1*}, F. Zivari²

¹ Associate Professor, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK.

> ² Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada.

ABSTRACT

A significant research program was undertaken to evaluate the effectiveness of a waterproofing (also known as water-resisting and permeability-reducing) admixture, with the commercial name of Hybrid ChemConcrete^{-WP} Waterproofing Admixture, to improve water-tightness and durability of commercial concrete mixes in corrosive environments. The waterproofing performance of the admixture was compared with a few other widely used waterproofing admixtures available on the market through water absorption test results. For each type of concrete, a control batch was produced without waterproofing admixtures, and other batches included waterproofing admixtures at the recommended dose rates by the manufacturers. This report provides the tests results of slump, air content, water contact angle, compressive and flexural strengths, and chloride resistance of concrete mixes. Assessment of these test results indicates that, whilst concrete performance was influenced by cement type, these permeability reducing admixtures can also significantly improve the durability of concrete. The findings show that Hybrid ChemConcrete^{-WP} Admixture has significant impact on enhancing the water-tightness and durability of concrete.

Key words: Concrete waterproofing admixtures; waterproof concrete; water absorption; durability; chloride resistance; ChemConcrete^{-WP}.

1. Introduction

Penetration of water is the main cause of all the major chemical and physical deterioration processes affecting concrete structures and pavements. Water may be the agent causingdistress or it may allow the penetration of aggressive species that cause damage. Excessive penetration of water can also compromise the functionality of many structures such as water tanks, basements, and liquid-retaining structures [1]. Commonly used methods to achieve durable and waterproof concrete include using supplementary cementitious materials, adopting low water to cement ratio, limiting cracks by using reinforcing elements or using surface coatings or membranes [1, 2]. Nevertheless, it is very hard to eliminate water penetration because concrete is naturally micro-cracked and porous, it is often exposed to corrosive environments, and it is prepared using variable site practices [1-3].

Another approach to reduce water penetration is using integral waterproofing admixtures (also known as water-resisting admixtures) [4]. These admixtures are often available in liquid or powder forms and could be generally classified as: 1) hydrophobic or water repelling admixtures, 2) crystalline admixtures, 3) densifying or pore blocking admixtures, and 4) hybrid admixtures [4]. Among these, the first three groups are very well-known. However, thelast group (hybrid admixtures) is considered as the new generation of waterproofing admixtures in which some chemicals with quite different waterproofing mechanisms (i.e., water repelling, pore blocking, crystalline/self-healing, etc.) are used. ChemConcrete^{-WP} waterproofing admixture, developed by Chem Concrete Pty Ltd may be considered as a new generation or the first hybrid waterproofing admixture in the market .

German Committee on Reinforced Concrete [5] limits the water absorption of waterproof concrete to below 50% in comparison to untreated concrete. However, waterproof concrete should have a water absorption rate of below 2.5% based on National Corporation of Highway Research Program in the USA [6]. In BS EN 14695 [7], it is stated that waterproof concrete should have the ability to prevent the movement of moisture from one place to another. Despite the definitions, it is obvious that waterproof concrete should have a very low water absorption [4].

Hydrophobic admixtures alter the surface energy or surface tension within cracks and pores to increase water/liquid contact angle and resist absorption. These admixtures usually consist of vegetable oils, fatty acids, wax emulsions, hydrocarbons, animal fats, silanes and siloxanes [1, 8]. Crystalline admixtures are reported to increase the resistance to water ingress by the deposition of solids via chemical reactions or removal from suspension [4]. The most widely used densifiers are nanomaterials and supplementary cementitious materials such asfly ash, slag, and silica fume. The effects of these agents in reducing the water absorption of concrete are well-understood. However, the effects of these agents on the water absorption reduction are limited to below 20%, which is far beyond the limitations specified by standardsfor waterproof concrete [4]. The use of integral waterproofing admixtures has many benefits over surface protection because they do not require regular maintenance, are not vulnerable todeterioration, and can be used where membranes or surface coatings are impossible or too complex to apply [1]. However, a more promising method to minimize water penetration into concrete is using hybrid integral waterproofing admixtures in concrete because these admixtures provide both hydrophobic and self-healing properties simultaneously.

A wide range of integral waterproofing admixtures are available in the market. The manufacturers have made many claims on the effectiveness of these products, such as providing an exceptional resistance to corrosion, permanent reduction in water absorption, and extended life span [1, 9]. However, a latest independent review by the Concrete Society

in the UK [9] found a distinct lack of independent data to substantiate the claims made by the manufacturers. Much of the existing data are provided by the manufacturers, and most of the current research has investigated generic materials rather than proprietary products. The ingredients in these commercial waterproofing admixtures and the mechanisms by which these admixtures provide waterproof concrete are often not reported [1]. This is specifically true when the admixture is prepared by mixing several different agents [1]. Some waterproofingadmixtures decrease water absorption in concretes with a high w/c ratio and restricted curing (low-grade porous concrete) but have minor effect on normal grade concrete [1, 4]. Therefore, these admixtures can do little to improve the waterproofing performance of concrete beyond what could be achieved by adopting a good mix design [1].

A comprehensive review conducted by the Concrete Society in the UK demonstrated that most of the current commercial waterproofing admixtures have limited impact on developing waterproof concrete [9]. However, ChemConcrete^{-WP} waterproofing admixture, classified as a new generation of hybrid waterproofing admixtures, has not yet been examined by researchers and/or Concrete Society in the UK. Therefore, the aim of the current research has been to evaluate the effects of this commercial admixture on the water absorption, strength properties, and chloride resistance of concrete and compare the results with similar researchon other commercial waterproofing admixtures.

2 .Experimental program

2.1 . Materials

Type II ordinary Portland cement (OPC) was used in this research. Natural river sand(with maximum particle size below 3 mm) and coarse aggregates (with a nominal maximum size of 10 mm) were used in this study. Before using the fine and coarse aggregates in the mixtures, all the aggregates were dried in an oven for 48 hours at a temperature of 105 °C. Some previous researchers have reported that the quality of water can affect the mechanical properties of concrete [10]. Therefore, in this research, tap water was used to prepare the specimens. Sodium chloride in powder form with over 96% purity was purchased from Alibaba in China. ChemConcrete^{-WP} waterproofing admixture in white liquid form (Figure 1) was supplied by Chem Concrete Pty Ltd, Australia. Experiments were carried out accordingto the relevant standards and the manufacturer's instructions.

Figure 1: ChemConcrete-WP waterproofing admixture in liquid form.

2.2. Mix design

The amount of cement in all the mixes were kept constant at 385 kg/m³ of concrete. Moreover, the amount of coarse and fine aggregates in the control concrete were 1075 and 667 kg/m³, respectively. To make the results comparable to those provided in [8], similar amounts of materials were used in this research. Similarly, the amount of water was determined after conducting some trial tests in a way that both the treated and untreated (control) concrete mixtures could achieve a target slump of 100 mm. The amount of ChemConcrete^{-WP} waterproofing admixtures used in the mix design were set at 2.2% (by weight) of total cementitious materials as recommended by the supplier.

2.3. Specimen preparation and curing

To prepare the untreated concrete, coarse and fine aggregates were mixes well in a 30-litre automatic mixer for about 2 minute. Then, cement was added to the mixture and the mixing was resumed for 2 minutes before adding the required water. To prepare the treated concrete, ChemConcrete^{-WP} waterproofing admixture was added to 30% of mixing water and stirred for 2 minutes. Then, this mixture was added to dry materials (mixture of basalt, sand, and cement). The mixing was further continued for 3 minutes until a homogeneous mixture was attained. The rest of the mixing water was then gradually added during the mixing process to achieve a target slump of 100 mm. Fresh concrete was then poured into cylindrical steel moulds with 100 mm diameter and 200 mm height (for water absorption and compressive strength tests), in steel moulds with the dimensions of 100×100×300 mm (for flexural strengthtests), and in cubic moulds with the dimensions of 100×100×100 mm (for chloride resistance tests) without using demoulding agents or oils. Demoulding agents or oils were not used inthis study as they can affect the water absorption rate or hydrophobic behaviour of concrete. After 24 hours of casting, the specimens were stripped and wrapped with plastic sheets to avoid significant moisture variations during their curing process. The concrete specimenswere then cured in an ambient chamber at 25 ± 1 °C for 28 days. Afterwards, some of the specimens were cut by a saw cutter to the specified sizes by ASTM C 642 standard for the water absorption tests.

2.4. Testing

In this research, the workability of the fresh concrete was measured through slump tests based on ASTM C143. The hydrophobic behaviour of the treated concrete specimens was measured using a water contact angle measurement equipment. The water absorption tests were carried out on the hardened concrete specimens following ASTM C 642. The flexural and compressive strengths tests were carried out on the concrete specimens following ASTM C78 and ASTM C39 standards, respectively. To measure the chloride resistance, concrete specimens were immersed in sodium chloride solutions for 90 days. The concentration of the chloride solution was 5%. Weight change and compressive strength reduction of the treated and untreated specimens were measured and reported.

3. Results and discussion

The tests results of the treated and untreated concrete, including fresh, mechanical and durability tests results, are presented and discussed in this section. The water absorption tests results are compared to the similar results from the literature.

3.1 Water absorption

In Figure 2, the waterproofing performance (water absorption tests results) of six commercial waterproofing admixtures, untreated (control) concrete, and concrete treated with ChemConcrete^{-WP} is presented. The test results of the untreated control concrete were necessary for comparison purposes. It should be noted that the results of the commercial products were carefully extracted from literature for the 28-day cured specimens. The reason behind selecting the results of 28-day cured specimens is because concrete is often considered mature after 28 days of curing. The results are comparable with those provided in the literature because the amount of materials used to prepare the specimens were kept constant. Based on relevant standards and manufacturers' instructions three replicate specimens were prepared and tested to ensure the accuracy of the test results. It is generally expected that a good waterproofing admixture should decrease the water absorption rate of concrete to below 2.5% or less than 50% of that of untreated (control) concrete, based on [5,6, 8]. The results demonstrate that Product-1 had even a slightly negative impact on the water absorption of concrete and increased the water absorption rate of concrete from 6.38% to 6.69%.

Other commercial admixtures (apart from ChemConcrete^{-WP}) decreased the water absorption rate of concrete, but the reduction is not significant and none of them could meet the limits specified in [5, 6]. These results are in line with the findings reported in similar studies [1, 4, 8]. The best results were achieved while using ChemConcrete-WP, which reduced the water absorption rate of concrete from 6.38% to below 1%, meeting the water absorption limits specified in [5, 6]. However, it is difficult to provide reasons for the results received because the ingredients of these commercial waterproofing admixtures are unknown [1]. Nevertheless, based on the current available information, ChemConcrete^{-WP} is reported to provide a waterproof concrete by benefiting from different waterproofing mechanisms such as water repelling, pore blocking, self-healing, densifying, etc. Therefore, ChemConcrete^{-WP} is reportedly known as the first generation of "hybrid" waterproofing admixtures. The other commercial admixtures are reportedly found to provide water-resistant concrete typically by only following one waterproofing mechanism such as crystalline or hydrophobing technologies. Therefore, the superior waterproofing performance of ChemConcrete^{-WP} (in comparison to the other six commercial admixtures) could be because of the simultaneous use of different ingredients with different waterproofing mechanisms.

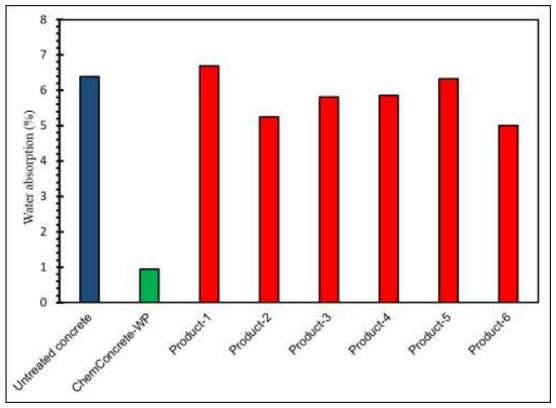


Figure 2: Waterproofing performance of untreated concrete and concrete treated with seven commercial admixtures.

3.2. Slump, water contact angle, and strength properties

If the water contact angle of a surface is between 0 ° to 90 °, it is called hydrophilic (also known as water lover). However, the water contact angle of a hydrophobic surface must be between 90 ° to 150 °. Slump and water contact angle measurement tests results on the cut surface of untreated (control) concrete and the concrete treated by ChemConcrete^{-WP} are presented in Table 1. As can be seen in this table, the water contact angle increased from 0 ° to 93 ° because of using ChemConcrete^{-WP} waterproofing admixture. Therefore, the treated concrete can be considered as a hydrophobic concrete. It could be concluded that the water repellent agents used in this admixture have turned the normal concrete into a water repellent/hydrophobic concrete. Through conducting some trial tests, the slump of both untreated and treated concretes were kept at 100 mm to make the results more comparable for similar applications.

The compressive and flexural strengths tests results of untreated (control) concrete and concrete treated with ChemConcrete^{-WP} waterproofing admixture are summarized in Table 1. As can be observed in this table, the compressive strength of 28-day cured concrete specimens increased from 41 MPa (for control/untreated concrete) to 48 MPa (for treated concrete). Similarly, the flexural strength of 28-day cured concrete specimens increased from 5.50 MPa (for control/untreated concrete) to 6.30 MPa (for treated concrete). The improvement in the compressive and flexural strengths of concrete could be due to the different ingredients in ChemConcrete^{-WP} waterproofing admixture that act as densifying, pore blocking, or self-healing agents. However, it should be noted that it is hard to further interpret these findings because the ingredients of this product are unknown [1], and there is currently no much information published on this product.

Test	Untreated (control) concrete	Treated with ChemConcrete-WP
Air content (%)	1.9	1.4
Slump (mm)	100	100
Water contact angle (°)	0	93
Compressive strength (MPa)	41	48
Flexural strength (MPa)	5.50	6.30

Table 1: Properties of control concrete and concrete treated with ChemConcrete^{-WP}.

3.3. Chloride resistance

Corrosion of steel rebars in concrete is the most challenging problem when it comes to concrete durability [11]. Rebar corrosion shortens the life span of concrete structures, infrastructures, and pavements. Chloride-induced corrosion is one of the main mechanisms of degradation affecting the long-term durability performance of concrete structures, especially in marine environments [2, 12].

Mass change and strength reduction of the untreated (control) concrete and concrete treated with ChemConcrete^{-WP} waterproofing admixture is presented in Table 2. It should be noted that the specimens were immersed in the solutions (for 90 days) after 28 days of curing. The results were compared with the strength of similar specimens that were cured for thesame age (118 days) and were not exposed to NaCl solution solution. Results of strength reduction (presented in Table 2) show that the chloride resistance of concrete treated by ChemConcrete^{- WP} was significantly more than the untreated control concrete. Untreated (control) concrete specimens experienced a strength reduction of 12%, whereas the treated concrete specimens with ChemConcrete^{- WP} experienced a strength reduction of 2%. The mass of both untreated and treated specimens increased by 2.44% and 0.06%, respectively. This increase in the mass of the specimens is due to the water (and maybe chemicals) absorption of the specimens because the specimens could be because of tendency to absorb more water. On the contrary, the treated specimens experienced a small mass gain, which could be due to the lower water absorption rate because of employing the waterproofing admixture.

Test	Untreated (control) concrete	Treated with ChemConcrete ^{-WP}
Mass change (%)	2.44	0.06
Strength reduction (%)	13.00	2.00

 Table 2: Mass change and strength reduction of treated and untreated concrete.

4. Conclusions

This research evaluated the effect of Hybrid ChemConcrete^{-WP} (a commercially available, hybrid integral waterproofing admixture) on the air content, water absorption, water contact angle, compressive strength, flexural strength, and chloride resistance of conventional OPC concrete. The water absorption tests results were also compared with the existing literature on similar waterproofing admixtures. The main finding of this technical research is summarized below.

Water absorption rate of 28-day cured concrete treated by H y b r i d ChemConcrete^{-WP} waterproofing admixture reduced from 6.38% to below 1%, and the developed concrete met the requirements of waterproof concrete. The comparison showed that the second most effective commercial waterproofing admixture (among six other waterproofing admixtures) reduced the water absorption rate of concrete from 6.38% to 5.01% and did not meet the requirements of waterproof concrete.

Hybrid ChemConcrete^{-WP} waterproofing admixture increased the water contact angle of concrete from 0 ° to 93 ° and developed a hydrophobic concrete. Compressive and flexural strengths of concrete increased from 41 MPa to 48 MPa and from 5.50 MPa to 6.30 MPa, respectively, when ChemConcrete^{-WP} was used.

Chloride resistance of concrete treated by ChemConcrete^{-WP} was significantly increased in comparison to the untreated control concrete. After 90 days of immersing the specimens inside 5% NaCl solution, the untreated and treated concrete with ChemConcrete^{-WP} experienced a strength reduction of 13% and 2%, respectively.

It is concluded that ChemConcrete^{-WP} waterproofing admixture has substantial impact on reducing the water absorption rate and developing a waterproof and durable concrete while simultaneously improving the strength properties of concrete. The findings of this research are in line with the claims made by ChemConcrete^{-WP} manufacturer.

Funding

Authors confirm that this research received no substantial funding or grant.

Acknowledgement

The authors wish to express their gratitude to Chem Concrete Pty Ltd in Australia for their materials supply and technical assistance throughout the research project.

References

- [1] Wong H.S et al. Hydrophobic concrete using waste paper sludge ash, Cement and Concrete Research, 70: 9-29, 2015.
- [2] Afshar A et al. Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives, Construction and Building Materials, 262,2020.
- [3] Mehrabi P et al. Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate, Construction and Building Materials, 122652,2021.
- [4] Jahandari, S., et al., Integral waterproof concrete: A comprehensive review, Journal of BuildingEngineering, 2023, 107718.
- [5]G.C.o.R. Concrete, Guidelines for the Protection and Repair of Concrete Components, Part3: Quality Assurance in Execution of the Works, 1991.
- [6] Pfeiffer D et al. Concrete sealing for protection of bridge structures, National Cooperative Highway Research Program (NCHRP 244), Transportation Research Board, Washington DC, 1981.
- [7] Flexible sheets for waterproofing. Reinforced bitumen sheets for waterproofing of concrete bridge decks and other trafficked areas of concrete, Definitions and characteristics, British Standard, BS EN 14695, 2010.
- [8] Jahandari S et al. Effects of different integral hydrophobic admixtures on the properties of concrete, Proceedings of the 30th Biennial National Conference of the Concrete Institute of Australia, Perth, Australia, 2021.
- [9] Concrete Society. The influence of integral water-resisting admixtures on the durability of concrete, CS, 174, 2013 (Camberley).
- [10] Afshar., A., et al., Effects of different coatings, primers, and additives on corrosion of steel rebars, Polymers, 15, 6, 1422.

- [11] Concrete Society., Enhancing reinforced concrete durability: guidance on selecting measures for minimising the risk of corrosion of reinforcement in concrete, Technical Report, 61, 2004 (Camberley).
- [12] Building Research Establishment, Concrete in aggressive ground, Special Digest, 1, BRE, Garston, 2005.

				a la face de la	1997 - 19	- 100			BERME	QHSE 119
					QHSE	FORM	S			on: 01
	FRI	VI								1 of 1
المحي 1975 FADEL AL	ل لامرودم للكرسانة الواهرة مراة AAZROUEI READY MIX - 5 .	ترتين ماه ole R LLC.		MIX D	ESIGN F	REVIEW	/ FORN	Λ	Approval Date	
Trial Mix Wo	orksheet				1000	14.			5.	
Date :	21-Sep-23		TIME	: 12:15 PM		Mix Code:	1.1.2		LTM:	232
Customer :	Bin Fadel R	eady Mix						IN.		
Client :	Na									
Project :	Lab Trial Mi	x		- 1 si						
Consultant :	Na			an and a state of the						
Grade :	C40/50 OPC			12082	and and an and an and an				W/C =	0.35
Trial Purpose:	Internal Lab	Trial Mix - 1	To Verify T	he Strength	& Workability	of Mix Desig	jn			2
	1	2	3	4	5	6	7	8	9	10
Material	Source	Туре	SSD	Moisture %	Absorption %	Net Water (4-5) %	Excess Wt. (6x8)/100 Kg/M ³	SSD Wt. Design Mix Kg/M ³	Corrective Design Mix Kg/M ³	Trial M For Pla (0.03 M
Cement	Emirates	OPC	20mm	33.95%		5mm	30.50%	290	290	8.
GGBS	Emirates Cement	Slag	10mm	18.04%		5mm	0.00%	110	110	3.
MS	Silica Trading	S.Fumes	DS	17.51%		Tot. Agg	1885	10	10	0.
20.0mm	Riyad Dhank - Oman	Crushed	2.72	0.00	0.90	-0.90	-5.76	640	634.24	19.
10.0mm	Riyad Dhank - Oman	Crushed	2.70	0.00	0.90	-0.90	-3.06	340	336.94	10.
5.0mm	W.B.G Crusher	Crushed (limestone)	2.69	0.70	1.30	-0.60	-3.45	575	571.55	17.
5.0mm Wash				1					5, 6,	
Dune Sand	Al Ain Municipality	Natural	2.64	0.90	0.90	0.00	0.00	330	330.00	9.
Total Excess V	Vater Due To	Moisture				*		-12.27	AD A A	
Note: * If The Value	e is Negative the	n Add To Free	Water, Else	Subtract From F	Free Water		Strend and	ant.		
Free Water								145.0		
Net Water									157.27	4.
Admix 1 -	Sika Plast 7	50						4.00	4.0	0.1
Admix 2 -	Sample 182	N (waterpr	oofer) (Austruli) ch	em - 10	00	4.00	4.0	0.1
Admix 3 -	2.2			18				0.00	0.0	0.
Theoretical Den	sitv	100	- 15		Area and an and a second s			2448	2448	

5

QHSE FORMS

BFRM-F QHSE 119 Version: 01 Page 1 of 1

MIX DESIGN REVIEW FORM

Approval Date: 03-11-2021

Slump Breakdown

Fre	quency		Checking Time	Slump mm	235 -		Slump	Breakd	own Ch	art		
@	5	Initial Slump	12:20 PM	230	230						Serie La	
@	30	minutes	12:45 PM	220	225	1						
@	60	minutes	1:15 PM	200			1					
@	90	minutes			E 220		1					
@	120	minutes			d215						1	1
N 1					205							
-					200			V			1.11	
and the star	2. 200	The second second			195	Sid		NEW .				
	1 1 1 1		L	12285-1	0	20) 4		80 (Minutes)	100	120	140

Additional I	nformation	(Compressive	Strength
Slump Required at Site	150±25	Age	No. of Cubes- 14	Due Date
Actual Wet Density (Yield)	2440 Kg/M ³	1 day	-	22-Sep-23
Humidity	%	3 days	2	24-Sep-23
Air Voids	3.0 %	7 days	2	28-Sep-23
Water Temperature	°C	14 days		5-Oct-23
Concrete Temperature	°C	28 days	2	19-Oct-23
		56 days		16-Nov-23
		1		
Ambient Temperature	°C			
Trial Mix Evaluation:				S
Setting Time:	Section of the section of the section of			No. of Concession, Name

Remarks :

		Additional	Tests Require	d	and the second		
Purpose	Test	Standard	DATE	Age	No. of Cubes	Client Specification	Cube Size (mm)
	Water Penetration (mm)	DIN 1048	19-Oct-23	28	2	NA	150x150x150
Durability	Water Absorption (%)	BS 1881 Part 122	19-Oct-23	28	2	NA	150x150x150
Test	Rapid Chloride Permeability (Coulombs)	ASTM:C1202	19-Oct-23	28	2	NA	150x150x150
	Chloride Migration					-	-
	Porosity	CPC 11.1			-	- 1	1. 1.21
	Chloride (%)	BS 1881 Part 124					101
	Sulphate (%)	BS 1881 Part 124		1000	-	-	19
	ISAT (ml/m ² /s)	BS1881:PART 208	19-Sep-23	28	2	NA	150x150x150

nnician Te Vinas N

Verified By Q.C.Engineer

Reviewed

Manager

ach)

Pradeep Komar

VOPOLI	QHSE FORMS	5	BFRM-F.QHSE 187
-RFKW	WORKSHEET FOR COMPRESSIVE	STRENGTH OF	Version : 04
ور فراده في النوادية	CONCRETE CUBES		Page 1 of 1
目的上期际规范。如何上	CONCRETE COBES		Approved Date : 29/03/2023
Customer Name Project Name	LAB TRUAL MIX		21-9-27 12:15PM
Delivery Note No.		Slump / Flow(mm)	2.00
Nominal Size of Spe	cimen (mm): 150 Class	of Concrete : <u>4%/5° op</u>	C+601,6613451,MS+
Nominal Size of Spe Load Applied Direct		of Concrete : <u>4:/5° of</u> ement Cast :	

Condition of the Specimen : Satisfactory / Unsatisfactory

Curing Condition : BS EN 12390 - 2 :2019

Volume Determination : Calculation (using actual measurements) / Calculation (checked, designed size)

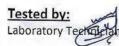
Cube No.	Test Date	Age of Test (Days)	1 1939	Average ensions		Weight (kg)	Cross Sectional	Volume of Specimen	Density (kg/m ³)	Max. Load at Failure	Compressive Strength	Type of
		(Days)	Length	Width	Height		Area (mm ²)	(m³)	(-3,)	(KN)	(N/mm²)	Failur
			150	5	150	Eler tel	N. 5500	A BOOM BEE	BER STORE	200.20	12	1
1		з	5	150	150	0.010	~	TTO	2463			S
	24-9-23	-	150	5	150	8.318	22500	0.002375	2965	877	38-67	-
		D.S.M	150	150	150	*		and and	1618	- Contraction		
2		3	150	150	150	8.298	000		21-0	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1	2
	v	1.34	150	150	15	8.40	22500	0 003375	2459	910	40.44	-
			15	15°	150			1		and the second		
3	28-9-27	7	15°	150	150					Internet Care		1.000
/			150	15'	150	8.324	22500	0.003375	2466	996	44.28	5
		-	150		150				13. 19 Mar			
4	5	9	150	150	150	2007		0.003375	1.70			2
-			150	150	150	8.337	22500	212200.0	2470	1018	45.26	2
				15	15°		na di L					
6	11-10-23	20	150	150	150	8.329	22500	0005		and the second	100 000	1102
S	11-10-1-		150	50	15	8.34	113	0.003375	2468	1011	44,92	S
			150	15°	150	States a						
6		4	150	15°	150	0 BUI	22500		2471			S
			150	150	150	8.341		0-00 3375	- 11	915	40.67	-

* S - satisfactory

Sampling Method : BS EN 12350 - 1 :2019 Test Specimen Preparation : BS EN 12390 Part - 2 :2019 Cls.6 : BS EN 12390 - 1 :2021 / BS EN 12390 - 3 :2019/ Test Method BS EN 12390 - 7 :2019 **Test Method Variation** Mone Remarks :... have

Equipment Ref No.: 1) BF-CM-02

2) 1420130286


3) C1006081258

4) QTS-0027-22-TH

Calibration Status : Kes / No

Room Temp. (⁰c) :....

Checked by Lab Engineer/ Lab Supervisor

						QHSE	FORM	1S	1	E	BFRM-F.QHSE	187
D*D			WOI	RKSH	EET F	OR CON	1PRESSIN	/E STREN			Version : 04	1.11114/2044
HERE	法和研究部署。当社会					CONCRE	TE CUBE		GIHOF		Page 1 of 1	
										Appro	oved Date : 29/	
Custor	ner Name	:		ß	FRM				Casting D		9-23	
Project	Name	:	LK	18 7	PLIAL	Mix ()	TM-23.)	3				
Delivery	/ Note No.											
								Slump	/ Flow(m	m) :		
Nominal	l Size of Spe	ecimen	ı (mm)	: 150			Class	s of Concret				
Load Ap	plied Direct	tion : P	erpend	dicular	to Cast	ing Face		Element Cas				
	of Grift / E						Ľ	lement Cas		1) 1040	NRE CODE	
							No.	of Specimer	n :	•••		
Condition	n of the Spe	ecimen	: Satis	factor	y / Unsa	atisfactory						
						y				5.		
	ondition : B											
olume D	Determinati	ion · C-										
		UII. Ca	lculati	on (us	ing actu	al measur	comental /	<u> </u>	2020 2800 38			
	1		lculati	on (us	ing actu	ial measur	rements) /	Calculation	(checked,	designed si	ze)	
Cube No.		Age of		Averag	ge		Cross	Calculation Volume of		T	1	
	Test Date		Dim	Average ensions	ge ; (mm)	Weight (kg)	Cross Sectional	Volume of Specimen	Density	designed si Max. Load at Failure	Ze) Compressive Strength	- Contraction of the second se
		Age of Test	Dim Length	Average ensions Width	ge ; (mm) Height	Weight	Cross	Volume of Specimen		Max. Load	Compressive	of
		Age of Test (Days)	Dim Length	Average nensions Width	ge (mm) Height	Weight (kg)	Cross Sectional Area (mm ²)	Volume of Specimen (m ³)	Density (kg/m ³)	Max. Load at Failure	Compressive Strength	of
Cube No.	Test Date	Age of Test (Days)	Dim Length (5°	Average ensions Width 150	ge (mm) Height 150 150	Weight	Cross Sectional	Volume of Specimen	Density (kg/m ³)	Max. Load at Failure	Compressive Strength (N/mm²)	of Failu
Cube No.	Test Date	Age of Test (Days)	Dim Length	Average mensions Width 150 150	ge (mm) Height 150 150	Weight (kg)	Cross Sectional Area (mm ²)	Volume of Specimen (m ³)	Density (kg/m³)	Max. Load at Failure (KN)	Compressive Strength	of
Cube No.	Test Date	Age of Test (Days)	Dim Length (5° (5°	Average mensions Width 150 150 150	ge (mm) Height 150 150 150	Weight (kg) 8-2.96	Cross Sectional Area (mm ²) १२४७०	Volume of Specimen (m ³)	Density (kg/m³) 2458	Max. Load at Failure (KN) j 2 シ)	Compressive Strength (N/mm²)	of Failu
Cube No.	Test Date	Age of Test (Days) 29	Dim Length (5° (5° (5°	Average mensions Width 150 150	ge (mm) Height 150 150	Weight (kg)	Cross Sectional Area (mm ²)	Volume of Specimen (m ³)	Density (kg/m³)	Max. Load at Failure (KN)	Compressive Strength (N/mm²)	of Failu
Cube No.	Test Date	Age of Test (Days) 29	Dim Length (5° (5° (5° (5°) (5°	Average nensions Width 150 150 150 150	ge (mm) Height 150 150 150 150	Weight (kg) 8-2.96	Cross Sectional Area (mm ²) १२४७०	Volume of Specimen (m ³)	Density (kg/m³) 2458	Max. Load at Failure (KN) j 2 シ)	Compressive Strength (N/mm²)	of Failu
Cube No.	Test Date	Age of Test (Days) 29	Dim Length (5° (5° (5° (5°) (5°	Average nensions Width 150 150 150 150	ge (mm) Height 150 150 150 150	Weight (kg) 8-2.96	Cross Sectional Area (mm ²) १२४७०	Volume of Specimen (m ³)	Density (kg/m³) 2458	Max. Load at Failure (KN) j 2 シ)	Compressive Strength (N/mm²)	of Failu
Cube No.	Test Date	Age of Test (Days) 29	Dim Length (5° (5° (5° (5°) (5°	Average nensions Width 150 150 150 150	ge (mm) Height 150 150 150 150	Weight (kg) 8-2.96	Cross Sectional Area (mm ²) १२४७०	Volume of Specimen (m ³)	Density (kg/m³) 2458	Max. Load at Failure (KN) j 2 シ)	Compressive Strength (N/mm²)	of Failu
Cube No.	Test Date	Age of Test (Days) 29	Dim Length (5° (5° (5° (5°) (5°	Average nensions Width 150 150 150 150	ge (mm) Height 150 150 150 150	Weight (kg) 8-2.96	Cross Sectional Area (mm ²) १२४७०	Volume of Specimen (m ³)	Density (kg/m³) 2458	Max. Load at Failure (KN) j 2 シ)	Compressive Strength (N/mm²)	of Failu
Cube No.	Test Date	Age of Test (Days) 29	Dim Length (5° (5° (5° (5°) (5°	Average nensions Width 150 150 150 150	ge (mm) 150 150 150 150	Weight (kg) 8-2.96	Cross Sectional Area (mm ²) १२४७०	Volume of Specimen (m ³)	Density (kg/m³) 2458	Max. Load at Failure (KN) j 2 シ)	Compressive Strength (N/mm²)	of Failu
Cube No.	Test Date	Age of Test (Days) 29	Dim Length (5° (5° (5° (5°) (5°	Average nensions Width 150 150 150 150	ge (mm) 150 150 150 150	Weight (kg) 8-2.96	Cross Sectional Area (mm ²) १२४७०	Volume of Specimen (m ³)	Density (kg/m³) 2458	Max. Load at Failure (KN) j 2 シ)	Compressive Strength (N/mm²)	
Cube No.	Test Date	Age of Test (Days) 29	Dim Length (5° (5° (5° (5°) (5°	Average nensions Width 150 150 150 150	ge (mm) 150 150 150 150	Weight (kg) 8-2.96	Cross Sectional Area (mm ²) १२४७०	Volume of Specimen (m ³)	Density (kg/m³) 2458	Max. Load at Failure (KN) j 2 シ)	Compressive Strength (N/mm²)	of Failu
Cube No.	Test Date	Age of Test (Days) 29	Dim Length (5° (5° (5° (5°) (5°	Average nensions Width 150 150 150 150	ge (mm) 150 150 150 150	Weight (kg) 8-2.96	Cross Sectional Area (mm ²) १२४७०	Volume of Specimen (m ³)	Density (kg/m³) 2458	Max. Load at Failure (KN) j 2 シ)	Compressive Strength (N/mm²)	of Failu
Cube No.	Test Date	Age of Test (Days) 29	Dim Length (5° (5° (5° (5°) (5°	Average nensions Width 150 150 150 150	ge (mm) 150 150 150 150	Weight (kg) 8-2.96	Cross Sectional Area (mm ²) १२४७०	Volume of Specimen (m ³)	Density (kg/m³) 2458	Max. Load at Failure (KN) j 2 シ)	Compressive Strength (N/mm²)	of Failu
Cube No.	Test Date	Age of Test (Days) 29	Dim Length (5° (5° (5° (5°) (5°	Average nensions Width 150 150 150 150	ge (mm) 150 150 150 150	Weight (kg) 8-2.96	Cross Sectional Area (mm ²) १२४७०	Volume of Specimen (m ³)	Density (kg/m³) 2458	Max. Load at Failure (KN) j 2 シ)	Compressive Strength (N/mm²)	of Failu

Test Specimen Preparation : BS EN 12390 Part - 2 :2019 Cls.6 : BS EN 12390 - 1 :2021 / BS EN 12390 - 3 :2019/ Test Method

BS EN 12390 - 7 :2019 :.....

.....

.....

Test Method Variation Remarks

Calibration Status : ____Yes / ____No Room Temp. (⁰c) :....

Tested by: Laboratory Technician

Checked by Lab Engineer/ Lab Supervisor

3) C1006081258

4) QTS-0027-22-TH

and the second se				QHSI	E FORMS	5		BFRM	F.QHSE 185
BFRM		WORKSHEET FOR DETERMINATION OF INITIAL						Version 04	
		WOR	SHEE	T FOR DE	TERMINAT	ION OF I	NITIAL		ge 1 of 1 oval Date
制用电发用器	NERENT HIX-SHER LLC	S	URFAC	CE ABSOR	RPTION OF	CONCRET	ГЕ		03/2023
Sample No	:		ACI			Sai	mpling Date		21-09-2
Class of Cor	ncrete	: <u>c</u> 4	150	opc+60	5% GGBS+5	51. ms+1	~P(4~g)	1m²)	
Casting Dat	e	:	21-09	1-23		. Date / 1	ime of Test	·	20-10-23
Place of Tes	st	: BFRM LAE	8						-8
Description	of the Surfa	ce of concret	te :	ALISFACT	ORY	Area of W	ater Contac	t (mm ²) ·	5408
	of the test su			and a second sec					8 3
Details abou	ut the condit	ioing of spec	imen :	3SEN 123	90-3-2-019			50 SB	460
	Sealing the C					Length of	capillal y tu	se (mm) :	
	· · · · · · · · · · · · · · · · · · ·		-	1	· · · · ·				
	Conditioning				1	Conditioni	ng tempera	ture (⁰ C) :	21.2
Date / Time	Conditioning	g Completed	: 20	-10-23	(4:35Pm)	Water ten	nperature (⁴	°C) :	21.8
		Temperature			Period During		T:		and mail
Specimen Id	Time of Test	of concrete	Time	Divisons in	Which Movement	No of Scale Divisons	No of Scale Divisons in	Initial Surface	Absorption Corrected to
		surface(⁰ C)	(min)	5 sec.	The of South South Street and	Moved	1 min.	Absorption	
	1			Carthoung and and	Measured		I min.		Equivalent 20 °C
	4:35PM	21.2	10	23	1200			10.0	1
/	4235PM		10 30	23	2 min	02	0]	0.01	Equivalent 20 °C
1	<u>4235P</u> M			23	1200			0.01	1
1		24.2	30		2 min	02	0]		0.01
1	4:50 PM		30 60	<u>23</u>	1200			0.005	1
1		24.2	30 60 10		2 min	02	0]		0.01
1		24.2	30 60 10 30		2 min	02	0]		0.01
1		24.2	30 60 10 30 60 		2 min	02	0]		0.01
1		24.2	30 60 10 30 60 -10 30		2 min	02	0]		0.01
1		24.2	30 60 10 30 60 		2 min	02	0]		0.01
۱ ۲ ampling Me	4:50 Pm	21.2	30 60 10 30 60 10 30 30 60		2 min 2 min	02	0.5		0.005
ampling Me	4:50 Pm	21.2	30 60 10 30 60 10 30 60 85 EN 3	< <u>3</u> 12350 Part	2 min 2 min	02	٥) ٥-5 Calibration	0-005 Status : 📭	0.005
ampling Me	<u>۲</u> کو ک بر thod	2-1-3	30 60 10 30 60 30 60 60 85 EN 2 85 188	< 3 12350 Part 1 Part 208:	2_min 2_min - 1 :2019	02	٥) ٥-5 Calibration	0 - 0 0.5 Status : 🗗 🖘 Ref. No : 1) ISA	0.005
ampling Me est Specime	<u>۲</u> وج ۲ مح ۲ Pm ۲ Pm ۲ Pm ۲ Pm ۲ Pm ۲ Pm	2 1.s	30 60 10 30 60 30 60 85 EN 5 BS 188 BS 188	< 3 12350 Part 1 Part 208: 1 Part 208:	2_min 2_min - 1 :2019 1996 Cls 8.1.:	02 01 3 3	ہ ا م-ج Calibration Equipment	0-005 Status : 📭	0.005

Tested By Laboratory Teg

2

Checked By Lab . Engineer /Lab. Supervisor

Testing Date: 20-10-23

DEDM		QHSE FORMS							M-F.QHSE 245
				1999 B. 1999			10		Version: 00
		REPORT ON INITIAL SURFACE ABSORPTION TEST					- L	Page 1 of 1	
peak	net of 19 Kelle Hiller X 4 8 (19 Keller)							Approva	al Date:29/03/202
Report N	0:	NA					Sample N	lo. :	NA
Project N	ame	LAB	TRIAL	MIX	(ITM .	232)		By : BFRM F	
Client Nar	me		A		<			.,	icp.
Consultan	ht								
Customer		BFR							
Sample De	escription	: Concrete Cubes							
Class of Co	oncrete	40/50 opc	+601.6	GBS+SI.	ms + (w	P 4 Eg /m	Source 3)	e : Bin Fade	EREM LAB
Method of	f Compaction	: By Hand				Date of Ca			21-9-23
Curing Cor	ndition	: BSEN 12390 Part 2	:2019						21-9-23
Place of Te	est	: BFRM LAB	Date Test Required					20 - 10 -22	
specimen (Condition Pric	or to Test : Done							
		ice : Horizontal				Date of Te		:	20-10-23
						Age of Test	t	· 10 1	10110
Irea of Wa	ter Contact o	f Cap/mm ²)	EU.0						1925
		f Cap(mm²) :				Diameter o			1925
		f Cap(mm ²) :				Method of	of Cap(mm) Sealing the) : ⊇ Cap : Clam	83 Iped
ength of C	Capillary Tube		460	: Cast surfa	ce of the c	Method of	of Cap(mm) Sealing the) : ⊇ Cap : Clam	83 Iped
ength of C	Capillary Tube	(mm) :	460		ce of the c bing.	Method of	of Cap(mm) Sealing the) : ⊇ Cap : Clam	83
ength of C	Capillary Tube	(mm) :	460	: Cast surfa	ce of the c bing.	Method of	of Cap(mm) Sealing the mooth fini) : ⊇ Cap : Clam	83 Iped
ength of C	Capillary Tube	(mm) :	46° est	: Cast surfa honey com 1	bing.	Method of sube having s	of Cap(mm) Sealing the mooth fini) : e Cap : Clam sh without o	83 Iped
ength of C	Capillary Tube of the Concre Specimen id Time of Test	(mm) :	<u>46°</u> est	: Cast surfa honey com	bing.	Method of sube having s 2 1:50 Pm	of Cap(mm) Sealing the mooth fini) : e Cap : Clam sh without o	83 Iped
ength of C	Capillary Tube of the Concre Specimen id Time of Test Temp. of Con	(mm) : ete Surface Under Te	<u>46°</u> est	: Cast surfa honey com 1 {35	bing.	Method of sube having s 2 1:50 Pm 2.1.3 Corrected to	of Cap(mm) Sealing the mooth fini) : e Cap : Clam sh without o 3 Corrected to	83 Iped
ength of C	Capillary Tuber of the Concre Specimen id Time of Test Temp. of Con Initaial Surfac sec)	(mm) : ete Surface Under Te screte Surface(⁰ C)	4 6 °	: Cast surfa honey com 1 1 21.2 Corrected to 20°C	L Actual	Method of tube having s 2 1:50 Pm 2.1:3 Corrected to 20°C	of Cap(mm) Sealing the mooth fini) : e Cap : Clam sh without o 3	83 Iped
ength of C	Capillary Tuber of the Concre Specimen id Time of Test Temp. of Con Initaial Surfac sec) @ 10	(mm) : ete Surface Under Te crete Surface(⁰ C) e Absorption(mI/m ² -	460 est Actual	: Cast surfa honey com 1 1:35 21.2 Corrected to 20°C a.01	Actual	Method of sube having s 2 4:50 Pm 2.1.3 Corrected to 20°C 0.005 5	of Cap(mm) Sealing the mooth fini) : e Cap : Clam sh without o 3 Corrected to 20°C	83 Iped
ength of C.	Capillary Tuber of the Concre Specimen id Time of Test Temp. of Con Initaial Surfac sec) @ 10 @ 30	(mm) : ete Surface Under Te crete Surface(⁰ C) se Absorption(mI/m ² - D mins	460 est Actual	: Cast surfa honey com 1 1 21.2 Corrected to 20°C	Actual	Method of sube having s 2 4:50 Pm 2.1.3 Corrected to 20°C 0.005 5	of Cap(mm) Sealing the mooth fini) : e Cap : Clam sh without o 3 Corrected to 20°C	83 Iped
ength of C	Capillary Tuber of the Concre Specimen id Time of Test Temp. of Con Initaial Surfac sec) @ 10 @ 30 @ 60	(mm) : ete Surface Under Te crete Surface(⁰ C) ee Absorption(ml/m ² - 0 mins 0 mins 0 mins	4 6 • est Actual 0 • • 1 This co	: Cast surfa honey com 1 1 1:35 21.2 Corrected to 20°C a.o1 ncrete is too imp	Actual	Method of sube having s 2 4:50 Pm 21.3 Corrected to 20°C a.ex 5 o be sensitive fi	of Cap(mm) Sealing the mooth fini) : e Cap : Clam sh without o 3 Corrected to 20°C	83 Iped
ength of C Description	Specimen id Time of Test Temp. of Con Initaial Surfac sec) @ 10 @ 30 @ 60	(mm) : ete Surface Under Te crete Surface(⁰ C) ee Absorption(mI/m ² - 0 mins 0 mins 0 mins	4 6 • est Actual 0 • • 1 This co	: Cast surfa honey com 1 1:35 21.2 Corrected to 20°C a.01	Actual	Method of sube having s 2 4:50 Pm 2.1.3 Corrected to 20°C 0.005 5	of Cap(mm) Sealing the mooth fini) : e Cap : Clam sh without o 3 Corrected to 20°C	83 Iped
ength of C Description sting Date	Capillary Tuber of the Concre Specimen id Time of Test Temp. of Con Initaial Surfac sec) @ 10 @ 30 @ 60	(mm) : ete Surface Under Te crete Surface(⁰ C) ee Absorption(mI/m ² - 0 mins 0 mins 0 mins	4 6 • est Actual 0 • • 1 This co	: Cast surfa honey com 1 (135 21.2 Corrected to 20°C 3.01 ncrete is too imp	Actual	Method of sube having s 2 4:50 Pm 21.3 Corrected to 20°C a.ex 5 o be sensitive fi	of Cap(mm) Sealing the mooth fini) : e Cap : Clam sh without o 3 Corrected to 20°C	83 Iped
ength of C Pescription sting Date rtificate of eperation	Specimen id Time of Test Temp. of Con Initaial Surfac sec) @ 10 @ 30 @ 60 f Sampling, Sp & Site Curing	(mm) : ete Surface Under Te crete Surface(⁰ C) ee Absorption(mI/m ² - 0 mins 0 mins 0 mins	4 6 0 est Actual 0 0 1 This co	: Cast surfa honey com 1 1 1:35 21.2 Corrected to 20°C 3.01 ncrete is too imp 1° / 23	Actual O 2005 permeable to 200 /	Method of sube having s 2 4:50 Pm 21.3 Corrected to 20°C a.ex 5 o be sensitive fi	of Cap(mm) Sealing the mooth fini) : e Cap : Clam sh without o 3 Corrected to 20°C	83 Iped
ength of C Pescription sting Date rtificate of eperation mpling Me	Specimen id Time of Test Temp. of Con Initaial Surfac sec) @ 10 @ 30 @ 60 f Sampling, Sp & Site Curing	(mm) : ete Surface Under Te crete Surface(⁰ C) ee Absorption(ml/m ² - 0 mins 0 mins 0 mins 0 mins	4 6 € est Actual 0 · 0 1 This co : 2 ∘ / : 2 ∘ / : Not Given	: Cast surfa honey com 1 (135 21.2 Corrected to 20°C 3.01 ncrete is too imp 10 / 23 n 350 Part 1 :20:	Actual Ordes permeable to 200 /	Method of sube having s 2 4:50 Pm 21.3 Corrected to 20°C a.ex 5 o be sensitive fi	of Cap(mm) Sealing the mooth fini) : e Cap : Clam sh without o 3 Corrected to 20°C	83 Iped
ength of C Description esting Date entificate of eperation mpling Me	Capillary Tuber of the Concre Specimen id Time of Test Temp. of Con Initaial Surfac sec) @ 10 @ 30 @ 60 f Sampling, Sp & Site Curing ethod en Preparation	(mm) : ete Surface Under Te acrete Surface(⁰ C) ee Absorption(ml/m ² - D mins D mins D mins D mins	4 6 € est Actual 0 · 0 This co : 2 ∘ / : Not Given BSEN 123 BS 1881 F	: Cast surfa honey com 1 1 1:35 21.2 Corrected to 20°C 3.01 ncrete is too imp 1° / 23	۲ مح مربع مرب مربع مربع مربع مربع مربع مربع مربع مربع مربع مربع مربع مربع مربع مربع مربه مرب مربه مرب مر	Method of sube having s 2 4:50 Pm 21.3 Corrected to 20°C a.ex 5 o be sensitive fi	of Cap(mm) Sealing the mooth fini) : e Cap : Clam sh without o 3 Corrected to 20°C	83 Iped

3

c, ', ,

<u>Checked by</u> Lab Engineer/Lab Supervisor

TOPOLA	QHS	FORMS	BFRM-F.QH
-SPRM			Version
شرئة بن فاضل لمزوده بالترسانة الجاهرة نبرة اشتار أولد دم م	WORKSHEET FOR	R DETERMINATION OF	Page 1
BIN FROELAL MAZROUEI READY MIX - Sole R LLC.	WATER PERME	EABILITY TEST (DIN)	Approval 29/03/20
Sample No :			
	PA	Age of Test	28
Class of Concrete	40/50 OPL +GOI. G	$4(\omega \cdot P + 4Eg)$	21-9
Appearance of Specimen W	/hen Received ·	+ (w P 4Kg)	
Condition of storage & curin	ng until testing :B	SEN 12390 - 2	- 2019
Direction of application of w	vater pressure with respe	ect to casting direction ·	PERENDI
Surface Treatment	DONE		4
		······································	
Date/ time pressure applicat		19- 10-23 (7: 22- 10-23 (7:	52
		22-10-23 (.7:	62
Date/ time pressure applicat	tion completed :	22-10-23 (.7:	52
Date/ time pressure applicat Applied pressure, bar Specimen ID	tion completed :	22- 10 -27 (.7: 5 N°°' 5	io Pm)
Date/ time pressure applicat Applied pressure, bar Specimen ID Dimensions (mm)	tion completed : : 1	5 N° 5	io Pm)
Date/ time pressure applicat Applied pressure, bar Specimen ID	tion completed : : 1	22- 10 -27 (.7: 5 N°°' 5	io Pm)
Date/ time pressure applicat Applied pressure, bar Specimen ID Dimensions (mm) Maximum Depth of Penetration (mm)	tion completed : 	22 - 10 -27 (.7: 5 N°' 5 2 150 × 150 × 150	io Pm)
Date/ time pressure applicat Applied pressure, bar Specimen ID Dimensions (mm) Maximum Depth of	tion completed : 	22 - 10 -27 (.7: 5 N°' 5 2 150 × 150 × 150	io Pm)
Date/ time pressure applicat Applied pressure, bar Specimen ID Dimensions (mm) Maximum Depth of Penetration (mm) Average Penetration (mm)	tion completed : 1 1 150 × 150 × 150 4	$\frac{22 - 10 - 23}{5 \times 0^{0} 5}$ $\frac{2}{150 \times 150 \times 150}$ $3 \cdot 5$!0 Pm) 3 150 x 150 x 1
Date/ time pressure applicat Applied pressure, bar Specimen ID Dimensions (mm) Maximum Depth of Penetration (mm) Average Penetration (mm) Sampling Method	tion completed : 	22 - 10 -27 (.7: 5 ×°' 5 2 150 × 150 × 150 3 3 · 5	!0 Pm) 3 150 x 150 x 1
Date/ time pressure applicat Applied pressure, bar Specimen ID Dimensions (mm) Maximum Depth of Penetration (mm) Average Penetration (mm)	tion completed : 1 1 150 × 150 × 150 4	$\frac{22 - 10 - 27}{5} (-7)$ $\frac{2}{150 \times 150}$ $\frac{2}{3}$ $3 \cdot 5$ D19 Equipment Ref	 3 150 x 150 x 1 50 x 150 x 1
Date/ time pressure applicat Applied pressure, bar Specimen ID Dimensions (mm) Maximum Depth of Penetration (mm) Average Penetration (mm) Sampling Method	tion completed : 1 150 × 150 × 150 4 : BSEN 12350 Part -1 :20 : DIN 1048 Part 5 : 1991	$\frac{22 - 10 - 27}{5}$ $\frac{2}{150 \times 150}$ $\frac{2}{3}$ $\frac{3 \cdot 5}{5}$ $\frac{2}{5}$ \frac	 3 150 x 150 x 1 50 x 150 x 1
Date/ time pressure applicat Applied pressure, bar Specimen ID Dimensions (mm) Maximum Depth of Penetration (mm) Average Penetration (mm) Gampling Method Test Specimen Preparation	tion completed : 1 150 x 150 x 150 4 : BSEN 12350 Part -1 :20	$\frac{22 - 10 - 27}{5}$ $\frac{2}{150 \times 150}$ $\frac{2}{3}$ $\frac{3 \cdot 5}{5}$ $\frac{2}{5}$ \frac	 3 150 × 150 × 15 5. No : 1) BF-AVC

Tested By Laboratory Technician

Checked By Lab. Engineer /Lab. Supervisor

Testing Date: 22-10-23

REMARKS:	Preparation prior to Immersion Test Drying (72 ± 2hr) Cooling (24 ± 0.5hr)	Correction factor = $\frac{V}{12.5 \text{ x s}}$	Detaile of r	1	4	-	Spec.	Type of Specimen:	Project Name:	DI	
ŝ	prior to n Test 2hr) ± 0.5hr)	Correction factor =	ainforce		73.0	73.0	Dimensions (nearest 1mm) Diameter (75 ± 3) 00 00 00 00	ecimen:	ct Na	TE	BFRN
	25-10-	ctor = -	mont (if a		150.3	0. 151	sions 1mm) Length (32 to 150) 000			RMI	
	Date & Start ~2.3 (11:30 AM	Volume (mm^3) 12.5 x surface area (mm^2)			1	١	Orientation Relative to Structure	Core from structure	LAB TRIAL		
Tested By Date	128	$\frac{m^3}{m^2}$ ea (mm^2)			SATISFACTORY	SATISFACTORY	Condition o (compaction	ture	VEL	Test Method :	
d By	Finish - 10 -23 (11:30/m) -10-23 (11:30/m)				FACTO	FACTO	f Specimer , voids and	LA CO	m X K	BS	
29-10-2	Duration (hr) An) 72- HES An) 24 HES	Condition of Storag Curing Method:			RY	RY	Condition of Specimen when received (compaction, voids and honeycombing)	Core from casted cube	(LTM-232)	TER 1881 Pa	Ą
Checked By	Density is determine is determined Accor Volume determined	Storage & Cur Id-Water 20±2 °c			629064	631993	Volume (mm³)	1 cube	MIX 22) USING	DETERMINATION OF WATER ABSORPT Test Method : BS 1881 Part 122 : 2011+A1	QHSE FO
ed By	ed accor ding to l by : ⊡	Condition of Storage & Curing until test date Curing Method:			42840	43000/	Surface Area (mm²)		G SAMPLE		FORMS
	ording to BS EN 12390 to BS EN 12390-1				14762	1499.4	Specimen Weight (g) After Drying & 30 ± 0 Cooling imme	Casted Cube	182 N(ION OF CONCRETE	
Witnessee Name Initial	12390-7 & Dim ement	Age at start of Absorption Test (days): (28 to 32)			9.98 hl	1509.4	n Weight) After 30 ± 0.5min immersing		(WATER	ONCRE	
0	ension	orption Ter 32)			L	ſ	Oven Dry Density (kg/m³) Nearest 10		PROOFER	II	
	Apparatus	st (days):			0.70	F9.0	Measured absorption (%) 0.0	Casted Cylinder		25	Refer
	Caliper: Balance: Oven :		Average		1.14	1 1.1.1	ion factor	Cylinder	4 Kg In	Date (dd/mm/yy) Start Fin 5 - 10 - 23 2 - 4-	Reference No.
	247	24	je o.g		0.82	0.78	on Corrected Absorption (%) 0.0		m3 CHEM 1000	1m/yy) Finish 29-10-23	

- 1

21.25

School of Engineering STEM College GPO Box 2476 Melbourne VIC 3001 Australia Tel. +61 3 9925 5776

5th May 2024

Re: Testing for of Hybrid ChemConcrete Waterproofing Admixture

Acid, chloride, and sulphate resistance tests were performed on Portland cement-based concrete specimens (untreated and treated mixes with ChemConcrete Waterproofing Admixture) per ChemConcrete Pty Ltd request. The test results are presented in Table 1. Please contact me if you require additional information.

Yours sincerely,

Dr Mohammad Saberian

B.Eng, M.Eng, PhD Lecturer at School of Engineering RMIT University T: +613 9925 5776 E: mohammad.saberian@rmit.edu.au

]	Designation	Mass loss (%)	Compressive strength reduction (%)
2% Acid	Untreated concrete	8.77	61
(H2SO ₄)	ChemConcrete	2.42	22
5% Sulphate	Untreated concrete	0.530	12
(Na2SO4)	ChemConcrete	0.083	3
5% Chloride	Untreated concrete	0.51	13
(NaCl)	ChemConcrete	0.094	3

Table 1. Acid, sulphate, and chloride resistance of concrete with and without ChemConcrete WP Admixture (Conducted at RMIT University).

Unit 9/108-110 Percival Rd (PO Box 2162) Smithfield NSW 2164 Ph: (02) 9756 4003 Email: admin@mahaffey.com.au ABN: 90 001 629 036

Client: Job Number:	Hy Tec 20401	
Details:	68923 N502B80C-S50 MPa Co	ontrol
Test Method:	Determination of chlorid method AS 1012.20.1	e and sulfate in hardened concrete and aggregates Nitric acid extraction
Cast Date: Received Date: Test Date:	1/07/2024 2/07/2024 24/07/2024	Chloride Test Report

Specimen	Depth	CI ⁻	
Specimen	From	То	(% w/w Specimen)
68923	-	-	<0.001

Notes:

Specimens prepared in this laboratory using AS1012 Method 20.1 – 2016 Section 6 Work covered by Clause 7 of the standard by NATA accredited facility no. 1884

) Will t

Signed:

David Wilmshurst Approved Signatory Date of Issue: 24/07/2024

Accredited for compliance with ISO/IEC 17025 - Testing

Unit 9/108-110 Percival Rd (PO Box 2162) Smithfield NSW 2164 Ph: (02) 9756 4003 Email: admin@mahaffey.com.au ABN: 90 001 629 036

Client: Job Number:	Hy Tec 20401	
Details:	68924 N502B80C-S50 MPa V	Vaterproofing
Test Method:	Determination of chlorid method AS 1012.20.1	de and sulfate in hardened concrete and aggregates Nitric acid extraction
Cast Date: Received Date: Test Date:	1/07/2024 2/07/2024 24/07/2024	Chloride Test Report

Specimen	Depth	CI ⁻	
Specimen	From	То	(% w/w Specimen)
68924	-	-	<0.001

Notes:

Specimens prepared in this laboratory using AS1012 Method 20.1 – 2016 Section 6 Work covered by Clause 7 of the standard by NATA accredited facility no. 1884

Signed:

David Wilmshurst Approved Signatory Date of Issue: 24/07/2024

) Wilml t

Accredited for compliance with ISO/IEC 17025 - Testing

January 7, 2025

Mr. Jim Kaylor Durability Consultants 19441 Citronia Street Northridge, CA 91324

Phone: (310) 650-4263 Email: jim@durabilityconsultants.com

Subject: Interim Report for ChemConcrete Waterproofing Admixture Compliance Verification for Type S Admixture ASTM C494/C494M-19- Standard Specification for Chemical Admixtures for Concrete SGS TEC Services Laboratory No: 24-1302

Dear Mr. Kaylor:

SGS TEC Services is an AASHTO R18 (Lab #100142), ANS/ISO/IEC 17025:2017 and Army Corps of Engineers accredited laboratory. SGS TEC Services is pleased to present this report of our compliance verification testing of ChemConcrete Waterproofing Admixture an ASTM C494/C494M-19- *Standard Specification for Chemical Admixtures for Concrete* (ASTM C494), Type S (*Specific Performance*) admixture. Our services were performed in accordance with our service agreement date July 23, 2024.

Sample preparation and testing was performed in accordance with applicable sections of ASTM C494, and documents referenced therein. Material and procedures outlined in ASTM C494 were used. Based on our results to date, ChemConcrete Waterproofing Admixture complies with the requirements in Table 1 of ASTM C494. These test results pertain only to the samples tested.

The compliance verification was performed by SGS TEC Services in Lawrenceville, Georgia. Concrete batching was performed on three different days in September of 2024. One control mixture and one test mixture containing ChemConcrete Waterproofing Admixture both meeting the requirements of ASTM C494 for fresh concrete properties were produced each day. One 5-gallon sample of ChemConcrete Waterproofing Admixture was supplied to SGS TEC Services by ChemConcrete Pty Ltd. The air-entraining agent used in this testing was a vinsol resin, meeting the requirements of ASTM C260/C260M-10a (2016) *Standard Specification for Air-Entraining Admixtures for Concrete*.

Testing of the concrete's plastic properties, time of setting, compressive strengths, flexural strengths, length change, and freeze thaw resistance were performed by SGS TEC Services. Mixture proportions and results of our testing are given in Tables 1 to 3. Information and test data on fine and coarse aggregates are listed in Tables 4 to 6. Table 7 contains information on ChemConcrete Waterproofing Admixture. Product information and test data on the Type I/II cement is included in Table 8. Test results for each of the six batches prepared for this report are included in Tables 9 thru 12.

SGS TEC SERVICES 235 Buford Drive | Lawrenceville GA 30046 770-995-8000 | www.tecservices.com

Table 1: ChemConcrete Waterproofing Admixture performance and ASTM C494 requirements for a Type S admixture.

Test Results	ChemConcrete Admixture	Specification Requirements
Time of setting, deviation of control		
Initial (hr:min)	-0:32	-1:00 to +1:30
Final (hr:min)	-0:45	-1:00 to +1:30
Compressive strength (percent of control)	· · · · · · · · · · · · · · · · · · ·	
3 days	171	90 (min)
7 days	142	90 (min)
28 days	130	90 (min)
56 days	135	90 (min)
90 days	130	n/a
6 months	Due 03-27-25	90 (min)
1 year	Due 09-26-25	90 (min)
Flexural strength (percent of control)	· · · · · · · · · · · · · · · · · · ·	
3 days	124	90 (min)
7 days	115	90 (min)
28 days	120	90 (min)
56 days	117	90 (min)
Length change (increase over control)	0.001	+0.010 (max)
Relative durability factor	101	80 (min)

Table 2: Mixture proportions, fresh concrete	properties, and ASTM C494 rec	uirements for Type S admixture
	F F	

Average of Three Separate Tests	Control Mixture	ChemConcrete Admixture	Specification Requirements
Cement factor (lb/yd ³)	515	516	517 ± 5
Water (lb/yd ³)	286	240	
Water-cement ratio	0.554	0.465	
Coarse aggregate	1844	1848	
Fine aggregate	1160	1285	
Fine aggregate-total aggregate ratio	0.39	0.41	
ChemConcrete Admixture (lbs)	0.00	10.33	
Vinsol Resin (oz/cwt)	0.52	0.56	
Slump (in.)	4.00	3.50	$3\frac{1}{2} \pm \frac{1}{2}$
Air content (%)	5.8	5.6	5-7 (\pm 0.5 of control)
Density (lb/ft ³)	140.9	144.1	
Time of setting			
Initial (hr:min)	4:29	3:57	
dev. of control (hr:min)		-0:32	-1:00 to +1:30
Final (hr:min)	6:16	5:31	
dev. of control (hr:min)		-0:45	-1:00 to +1:30

Table 3: Properties of hardened concrete

Test Performed	Control Mixture	ChemConcrete Admixture
Compressive strength (psi)		
3 days	2210	3770
7 days	3080	4370
28 days	4290	5570
56 days	4630	6240
90 days	4830	6290
6 months	Due 03-27-25	Due 03-27-25
1 year	Due 09-26-25	Due 09-26-25
Flexural strength (psi)	•	
3 days	475	590
7 days	555	640
28 days	675	810
56 days	680	795
Length change (%)	-0.021	-0.022
Durability factor (%)	92	93

 Table 4: Properties of fine and coarse aggregates

Aggregate Information	Fine aggregate	Coarse aggregate
Manufacturer	Lambert Sand, Shorter	Vulcan, Lithonia
Aggregate Type	Natural sand	Crushed Granite
Specific Gravity SSD	2.630	2.648
Absorption (%)	0.76	0.43

Table 5: Gradation of fine aggregate and ASTM C494 requirements

	Percent passing	
Sieve	Fine Aggregate	Specifications Requirements
No. 4 (4.75 mm)	100	100
No. 16 (1.18 mm)	71	65 to 75
No. 50 (300 µm)	19	12 to 20
No. 100 (150 µm)	4	2 to 5

 Table 6: Gradation of coarse aggregate and ASTM C494 requirements

Percent passing						
Sieve	Coarse Aggregate	Specifications Requirements				
1.5 in. (37.5 mm)	100	100				
1.0 in. (25.4 mm)	98	95 to 100				
0.5 in. (12.5 mm)	34	25 to 60				
No. 4 (4.75 mm)	3	0 to 10				
No. 8 (2.36 mm)	3	0 to 5				

Table 7: Admixture information

Information	Admixture Information
Brand Name	ChemConcrete Waterproofing Admixture
Manufacturer	ChemConcrete Pty Ltd.
Lot Size	500 lbs
Solid content (%)	57.914
рН	5.51
Chloride Content (% per BS EN 480-10:2009)	0.001

Table 8: Cement information and test data

AS	ТМ С 150 Ту _р	oe I/II cement		
Brand name Portland Type I/II				
Manufacturer		Cemex Clinchfield Plant		
Ch	emical Analyse	s by Mass (%)		
Silicon dioxide (SiO ₂)	20.2	Sulfur trioxide (SO ₃)	3.3	
Aluminum oxide (Al ₂ O ₃)	4.8	Loss on ignition (950°C)	2.8	
Iron oxide (Fe ₂ O ₃)	3.3	Insoluble residue	0.34	
Calcium oxide (CaO)	65.4	Alkalies as Na ₂ O	0.26	
Magnesium oxide (MgO)	1.0			
Calculated Potent	tial Compounds	s as per ASTM C 150-05 (%)		
Tricalcium silicate (C ₃ S)	65	Tricalcium aluminate (C ₃ A)	7.0	
Dicalcium silicate (C ₂ S)	8	Tetracalcium aluminoferrite (C ₄ AF)	10	
Р	hysical Testing	and Results		
Fineness Specific Surface (Blaine)	472 m ² /Kg	Air Content (%)	4.9	
Setting Times (Vicat) Initial	79 minutes	Autoclave Expansion (%)	0.01	
Compressive 3 Day Strength (psi)	3830	Compressive 7 Day Strength (psi)	4650	
C1038 Expansion @ 3.39% SO ₃ (%)	0.006	Density of Hydraulic Cement (g/cm ³)	3.13	

*Provided by Cemex

Materials & Plastic Properties	Control 1	Control 2	Control 3	Average
Cement factor (lb/yd ³)	515	514	517	515
Water (lb/yd ³)	288	284	285	286
Water-cement ratio	0.559	0.552	0.552	0.554
Coarse aggregate (lb/yd ³)	1842	1839	1851	1844
Fine aggregate (lb/yd ³)	1152	1160	1167	1160
Fine aggregate-total aggregate ratio	0.385	0.387	0.387	0.39
ChemConcrete Admixture (lbs)	0.00	0.00	0.00	0.00
Vinsol Resin (oz/cwt)	0.57	0.53	0.45	0.52
Slump (in.)	4.00	4.00	4.00	4.00
Air content (%)	5.9	6.1	5.5	5.8
Density (lb/ft ³)	140.6	140.6	141.5	140.9
Time of setting				
Initial (hr:min)	4:34	4:21	4:31	4:29
Final (hr:min)	6:11	6:04	6:32	6:16

Table 9: Yield adjusted mixture proportions, fresh concrete properties, and time of set for three control batches.
--

Table 10: Yield adjusted mixture proportions, fresh concrete properties, and time of set for three test batches containing ChemConcrete Waterproofing Admixture.

Materials & Plastic Properties	Test 1	Test 2	Test 3	Average
Cement factor (lb/yd ³)	516	517	516	516
Water (lb/yd ³)	239	241	241	240
Water-cement ratio	0.464	0.466	0.466	0.465
Coarse aggregate (lb/yd ³)	1847	1850	1848	1848
Fine aggregate (lb/yd ³)	1286	1285	1283	1285
Fine aggregate-total aggregate ratio	0.410	0.410	0.410	0.41
ChemConcrete Admixture (lbs)	10.32	10.34	10.32	10.33
Vinsol Resin (oz/cwt)	0.55	0.55	0.58	0.56
Slump (in.)	3.25	3.50	3.50	3.50
Air content (%)	5.6	5.5	5.6	5.6
Density (lb/ft ³)	144.0	144.2	144.0	144.1
Time of setting				
Initial (hr:min)	3:52	3:57	4:03	3:57
Final (hr:min)	5:15	5:32	5:47	5:31

Test Age	Cont	rol 1	Cont	trol 2 Con		trol 3	Average
		Compre	ssive strengt	h (psi)			
3 days	20	00	21	60	24	70	2210
7 days	30	30	30	40	31	80	3080
28 days	43	90	41	40	43	40	4290
56 days	43	70	45	40	49	70	4630
90 days	48	40	47	30	49	20	4830
6 months	Due 03	3-27-25	Due 03	8-27-25	Due 03	8-27-25	NA
1 year	Due 09	-26-25	Due 09	9-26-25	Due 09	9-26-25	NA
		Flexu	ral strength ((psi)			
3 days	495		44	440		495	
7 days	565		54	45	50	50	555
28 days	650		665		710		675
56 days	705		685		645		680
Length change (%)	-0.021		-0.0	020	-0.022		-0.021
Durability Factor (%)	9	2	9	92 9		2	92
Approximate Total		mental Tran requency, kH		Relative Dynamic Modulus, (%) Average of 2 Beams per Mix		Average	
Cycles Completed	Control 1	Control 2	Control 3	Control 1	Control 2	Control 3	_
0 cycles	2.086	2.086	2.041	NA	NA	NA	NA
32 cycles	2.086	2.086	2.041	100	100	100	100
66 cycles	2.041	2.041	2.041	96	96	100	97
96 cycles	2.041	2.041	1.997	96	96	96	96
128 cycles	2.041	2.041	1.997	96	96	96	96
162 cycles	1.997	1.997	1.953	92	92	92	92
192 cycles	1.997	1.997	1.953	92	92	92	92
220 cycles	1.997	1.997	1.953	92	92	92	92
253 cycles	1.997	1.997	1.953	92	92	92	92
287 cycles	1.997	1.997	1.953	92	92	92	92
300 cycles	1.997	1.997	1.953	92	92	92	92

Table 11: Properties of hardened concrete from three control test batches

Test Age	Te	st 1	Tes	st 2	Te	st 3	Average
		Compre	ssive strengt	n (psi)	•		
3 days	36	50	38	00	38	570	3770
7 days	43	70	43	60	43	70	4370
28 days	56	10	55	20	55	90	5570
56 days	62	50	64	20	60	60	6240
90 days	63	00	60	80	64	.90	6290
6 months	Due 03	3-27-25	Due 03	8-27-25	Due 03	3-27-25	NA
1 year	Due 09	9-26-25	Due 09	-26-25	Due 09	9-26-25	NA
		Flexu	ral strength (psi)			
3 days	6.	30	57	75	5	70	590
7 days	6	70	61	10	64	40	640
28 days	840		800		795		810
56 days	8	10	805		765		795
Length change (%)	-0.027		-0.020		-0.020		-0.022
Durability Factor (%)	9	6	9	92		92	
Approximate Total Cycles Completed	Fundamental Transverse kHz		e Frequency,	Average	Dynamic Mo of 2 Beams		Average
· · ·	Test 1	Test 2	Test 3	Test 1	Test 2	Test 3	
0 cycles	2.175	2.175	2.175	NA	NA	NA	NA
32 cycles	2.175	2.175	2.175	100	100	100	100
66 cycles	2.175	2.175	2.130	100	100	96	99
96 cycles	2.175	2.130	2.130	100	96	96	97
128 cycles	2.130	2.130	2.130	96	96	96	96
162 cycles	2.130	2.130	2.086	96	96	92	95
192 cycles		2.086	2.086	96	92	92	93
220 cycles	2.130	2.086	2.086	96	92	92	93
253 cycles	2.130	2.086	2.086	96	92	92	93
287 cycles	2.130	2.086	2.086	96	92	92	93
300 cycles	2.130	2.086	2.086	96	92	92	93

Table 12: Properties of hardened concrete from three batches containing ChemConcrete Waterproofing Admixture.

We appreciate the opportunity to provide our services to you on this project. Should you have any questions or comments regarding this report, please feel free to contact us at your convenience.

Sincerely,

SGS TEC Services, Inc.

L-Pze

Shawn P. McCormick Laboratory Principal

Muhy Lyon

Michael Lyon Project Manager

F: +61 (02) 9624 9999 www.boral.com.au

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia Dr. Sam Soheil Jahandari, Dr Saeed Karimian, Professor Adam Ahmad Dalvand PO Box 400, Winston Hills NSW 2153

21-January-2025

T: +61 (02) 9624 9900

Chem Concrete Pty Ltd and Perchinz Developments Limited

Re: Report for ChemConcrete-^{WP} Waterproffing Admixture Compliance Certificate for Type SN AS 1478.1-2000 Chemical admixtures for concrete, mortar and grout, Part 1: Admixtures for concrete

Dear Dr. Sam Soheil Jahandari, Dr Saeed Karimian, Professor Adam Ahmad Dalvand

Boral is proud to operate the largest construction materials research and testing facility of its kind in the southern hemisphere at Baulkham Hills, Sydney. This facility plays a key role in maintaining the high standards Boral customers have come to expect and its accredited by NATA (ISO/IEC 17025) and certified by NCSI (ISO 9001) to conduct an extensive range of compliance testing on cement, aggregates, soil, pavement materials, concrete, and asphalt.

The Boral MTS Lab. conducts construction materials testing and chemical testing under NATA accreditation numbers 547 and 9968, respectively. Our full scope of accreditation can be viewed at the NATA website https://nata.com.au/

Four concrete trials were performed in accordance with applicable sections of AS 1478.1 - two trials for the concrete and two trials for ChemConcrete-WP admixture. One 20-litre pail of ChemConcrete Waterproofing Admixture was supplied to Boral by Chem Concrete Pty Ltd. All materials were homogenised and batched on the same day before mixing date. All four trials were performed on the same day in the order of control mix, control mix duplicate, concrete with ChemConcrete-WP and concrete with ChemConcrete-WP duplicate. The dosage of ChemConcrete-WP is at 2% of cement by weight. Each trial was carried out as per AS 1012.2. The fresh properties include slump AS 1012.3.1, air content AS 1012.4.2, fresh density AS 1012.5, bleed AS 1012.6, and setting time AS 1012.18. A total of 12 concrete cylinders were cast and cured as per AS 1012.8.1 and tested for compressive strength as per AS 1012.9 at 1x1d, 2x3d, 3x7d, 3x28d and 3x90d. One set of shrinkage prisms were cast and cured as per AS 1012.8.4 and tested for the drying shrinkage as per AS 1012.13 up to 56d drying.

All results from above tests can be read from NATA reports and summarised on page 3. They were compared with the requirements in Table 2.1 AS 1478.1 (column SN) for the compliance or not. The comparison report is presented on page 2.

In conclusion, we confirm that ChemConcrete-WP Admixture complies with the requirements as per AS1478.1-2000 for Type SN admixture.

Sincerely

Tony Jongainie 21.01.2025

Tony Song Senior Laboratory Engineer - Concrete

CONCRETE TEST SUMMARY

ChemConcrete-WP Admixture, Type SN, AS1478.1

AT 2.0% BY WEGHT OF CEMENT

Boral Construction Materials Materials Technical Services

F: +61 (02) 9624 9999

www.boral.com.au

Date of Test: 16 10 2024

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

CLIENT: Chem Concrete Pty Ltd and Perchinz Developments Limited T: +61 (02) 9624 9900

PROJECT: AS1478 Compliance Test for ChemConcrete-WP

Client No: 911/24

REQUEST No: 115259

LAB SAMPLE No: 311691 & 311692 (control), 311693 & 311694 (ChemConcrete-WP) Standard AS 1478.1-2000: Chemical admixtures for concrete, mortar and grout,

part 1: admixtures for concrete

Cement: Bulk Type GP ex Berrima 2402496 BTSL

control and type				Bute of redt. 10.10.20		
PARAMETERS	Control	ChemConcrete -WP at 2%	Comparison	AS1478.1 REQUIREMENTS	Pass or Fail	
Cement Content	305	305	same	(cement 300 ± 15 kg/ m ³)	Pass	
Slump	80	80	same	80 ± 10 mm	Pass	
Time of Setting	4:00 5:50	4:20 6:00	+20min +10min	Initial: ± 1 hour Final: ± 1 hour	Pass	
Water Content	206	183	-23kg	Test and report	Pass	
Bleeding (%)	1.7	0.4	-1.3%	Not exceed that of the control by more than 2%	Pass	
Air Content (%)	2.0	2.2	+0.2%	Test and report	Pass	

COMPRESSIVE STRENGTH:

Age	Min. of Control	Control (MPa)	ChemConcrete WP at 2% (MPa)	Comparison	Pass/Fail
1	No limit	9.5	12.8	133%	Pass
3	90%	20.6	26.1	127%	Pass
7	90%	29.5	35.4	120%	Pass
28	90%	34.2	40.4	118%	Pass
90	90%	34.3	41.0	119%	Pass

DRYING SHRINKAGE: (Microstrain)

Age	Min. of Control	Control	ChemConcrete- WP at 2%	Difference
7	Test and report no limit established	215	195	- 20
14	Test and report no limit established	335	295	- 40
21	Test and report no limit established	425	370	- 55
28	Test and report no limit established	505	445	- 60
56	Test and report no limit established	615	555	- 60

Note: All samples were prepared, cured and tested at this Laboratory as per AS 1012.2, 3, 4, 5, 6, 8, 9, 13, 18 respectively. **Remarks:** This admixture (ChemConcrete-WP at 2%) complies with the requirements as per AS1478.1 2000, type SN admixture.

Dr. Sam Soheil Jahandari, Dr Saeed Karimian, Professor Adam Ahmad Dalvand, File 911, File 8477, Ref 115259SD

21.01.2025 Tony Jongdun ji

Tony Song Senior Laboratory Engineer - Concrete

Project: AS 1478 Compliance Tests for ChemConcrete-WP Attention: Dr. Sam Soheil Jahandari, Dr Saeed Karimian, Professor Adam Ahmad Dalvand Client: : Chem Concrete Pty Ltd and Perchinz Developments Limited Request: 115259 Client: 911/24

Concrete section: 8477

Re: AS 1478 Compliance Tests for ChemConcrete-WP

Boral Construction Materials Materials Technical Services

Unit 4, 3-5 Gibbon Road Baulkham Hills NSW 2153 Australia PO Box 400, Winston Hills NSW 2153

T: +61 (02) 9624 9900 F: +61 (02) 9624 9999

www.boral.com.au

Re: A5 14	78 Comp	pliance Tests	for ChemCo	oncrete-WP	www.k
MTS Concrete Trials No.	T13575	T13576	T13577	T13578	
Cementitious ID	Control	Control duplicate	ChemConcrete- WP Admix	ChemConcrete- WP Admix duplicate	
MTS LSN for concrete trials	311691	311692	311693	311694	
MIX DATE:	16.10.2024				
Boral Cement SL	kg/m ³	305	305	305	305
ChemConcrete-WP (liquid class SN	ml/m ³	0	0	6000	6000
20mm Peppertree	kg/m ³	730	730	730	730
10mm Peppertree	kg/m ³	280	280	280	280
Peppertree Man Sand	kg/m ³	460	460	460	460
Dunmore washed fine sand	kg/m ³	390	390	390	390
Water	kg/m ³	206	206	184	182
Slump AS 1012.3.1	mm	85	80	80	80
Fresh concrete density AS 1012.5	kg/m ³	2370	2360	2360	2360
Water / Cement	ratio	0.68	0.68	0.60	0.60
Air content AS 1012.4.2	%	2.0	2.0	2.2	2.2
Bleeding AS 1012.6	%	1.7	1.6	0.3	0.4
Setting time AS 1012.18 (initial)	hr:mm	4:00	4:00	4:20	4:20
Setting time AS 1012.18 (final)	hr:mm	5:50	5:50	5:50	6:10
	1	10.0	9.2	12.5	13.0
	3	21.0	20.5	26.0	27.0
	3	20.5	20.5	25.5	26.0
	7	29.5	30.0	35.0	36.5
	7	29.0	29.5	34.5	35.5
AS1012.9 Compressive strength	7	30.0	29.0	35.5	35.5
(MPa @ days)	28	35.5	33.0	40.0	39.5
	28	35.5	33.5	41.5	40.0
Ī	28	34.0	33.5	40.0	41.5
	90	34.0	35.5	39.5	42.5
	90	33.5	35.5	39.5	42.0
	90	34.0	33.5	40.5	42.0
	7	220	210	200	190
	14	340	330	290	300
AS1012.13 Drying shrinkage (micro strains @ days)	21	430	420	370	370
	28	510	500	440	450
	56	630	600	550	560

TS updated 20.01.2025

Tony Songoini 21.01.2025

CONCLUSIONS

In conclusion, independent testing results show that ChemConcrete^{-WP} Admix provides permanently waterproof concrete with significantly improved fresh, strength, and durability properties compared to untreated concrete and concrete treated with some other commercial waterproofing admixtures. Depending on the dosage of the admixture used, concrete treated with ChemConcrete^{-WP} Admixture has 20 – 50% higher compressive strength, 70 – 95% lower water absorption rate and permeability, and tripled service life compared to untreated concrete or concrete treated with some other similar waterproofing admixtures. Contact CHEM CONCRETE's team for detailed "Life-Cycle Cost" and "Environmental Impact Analysis" of ChemConcrete WP Admix.

